probability-discrete.rst
changeset 0 328995b5b8fd
child 5 60353d4d994d
equal deleted inserted replaced
-1:000000000000 0:328995b5b8fd
       
     1 
       
     2 =============
       
     3  Probability
       
     4 =============
       
     5 .. contents::
       
     6    :local:
       
     7 
       
     8 .. role:: def
       
     9    :class: def
       
    10 
       
    11 PMF
       
    12 ===
       
    13 
       
    14 :def:`PMF` or :def:`probability mass function` or :def:`probability law` or
       
    15 :def:`probability discribuion` of discrete random variable is a function that
       
    16 for given number give probability of that value.
       
    17 
       
    18 To denote PMF used notations:
       
    19 
       
    20 .. math::
       
    21 
       
    22    PMF(X = x) = P(X = x) = p_X(x) = P({ω ∈ Ω: X(ω) = x})
       
    23 
       
    24 where :math:`X` is a random variable on space :math:`Ω` of outcomes which mapped
       
    25 to real number via :math:`X(ω)`.
       
    26 
       
    27 Expected value
       
    28 ==============
       
    29 
       
    30 :def:`Expected value` of PMF is:
       
    31 
       
    32 .. math::
       
    33 
       
    34   E[X] = Σ_{ω∈Ω} Χ(x) * p(ω) = Σ_{x} x * p_X(x)
       
    35 
       
    36 We write :math:`a ≤ X ≤ b` for :math:`∀ ω∈Ω a ≤ X(ω) ≤ b`.
       
    37 
       
    38 If :math:`X ≥ 0` then :math:`E[X] ≥ 0`.
       
    39 
       
    40 if :math:`a ≤ X ≤ b` then :math:`a ≤ E[X] ≤ b`.
       
    41 
       
    42 If :math:`Y = g(X)` (:math:`∀ ω∈Ω Y(ω) = g(X(ω))`) then:
       
    43 
       
    44 .. math::
       
    45 
       
    46   E[Y] = Σ_{x} g(x) * p_X(x)
       
    47 
       
    48 **Proof** TODO:
       
    49 
       
    50 .. math::
       
    51 
       
    52   E[Y] = Σ_{y} y * p_Y(y)
       
    53 
       
    54   = Σ_{y∈ℝ} y * Σ_{ω∈Ω: Y(ω)=y} p(ω)
       
    55 
       
    56   = Σ_{y∈ℝ} y * Σ_{ω∈Ω: g(X(ω))=y} p(ω)
       
    57 
       
    58   = Σ_{y∈ℝ} y * Σ_{x∈ℝ: g(x)=y} Σ_{ω∈Ω: X(ω) = x} p(ω)
       
    59 
       
    60   = Σ_{y∈ℝ} y * Σ_{x∈ℝ: g(x)=y} p_X(x)
       
    61 
       
    62   = Σ_{y∈ℝ} Σ_{x∈ℝ: g(x)=y} y * p_X(x)
       
    63 
       
    64   = Σ_{x∈ℝ} Σ_{y∈ℝ: g(x)=y} y * p_X(x)
       
    65 
       
    66   = Σ_{x} g(x) * p_X(x)
       
    67 
       
    68 .. math::
       
    69 
       
    70   E[a*X + b] = a*E[X] + b
       
    71 
       
    72 Variance
       
    73 ========
       
    74 
       
    75 :def:`Variance` is a:
       
    76 
       
    77 .. math::
       
    78 
       
    79   var[X] = E[(X - E[X])^2] = E[X^2] - E^2[X]
       
    80 
       
    81 :def:`Standard deviation` is a:
       
    82 
       
    83 .. math::
       
    84 
       
    85   σ_Χ = sqrt(var[X])
       
    86 
       
    87 Property:
       
    88 
       
    89 .. math::
       
    90 
       
    91   var(a*X + b) = a²̇ · var[X]
       
    92 
       
    93 
       
    94 Total probability theorem
       
    95 =========================
       
    96 
       
    97 Let :math:`A_i ∩ A_j = ∅` for :math:`i ≠ j` and :math:`∑_i A_i = Ω`:
       
    98 
       
    99 .. math::
       
   100 
       
   101   p_X(x) = Σ_i P(A_i)·p_{X|A_i}(x)
       
   102 
       
   103 Conditional PMF
       
   104 ===============
       
   105 
       
   106 :def:`Conditional PMF` is:
       
   107 
       
   108 .. math::
       
   109 
       
   110   p_{X|A}(x) = P(X=x | A)
       
   111 
       
   112   E[X|A] = ∑_x x·p_{X|A}(x)
       
   113 
       
   114 Total expectation theorem
       
   115 =========================
       
   116 
       
   117 .. math::
       
   118 
       
   119   E[X] = Σ_i P(A_i)·E[X|A_i]
       
   120 
       
   121 To prove theorem just multiply total probability theorem by :math:`x`.
       
   122 
       
   123 Joint PMF
       
   124 =========
       
   125 
       
   126 :def:`Joint PMF` of random variables :math:`X_1,...,X_n` is:
       
   127 
       
   128 .. math::
       
   129 
       
   130    p_{X_1,...,X_n}(x_1,...,x_n) = P(AND_{x_1,...,x_n}: X_i = x_i)
       
   131 
       
   132 Properties:
       
   133 
       
   134 .. math::
       
   135 
       
   136   E[X+Y] = E[X] + E[Y]
       
   137 
       
   138 Conditional PMF
       
   139 ===============
       
   140 
       
   141 :def:`Conditional PMF` is:
       
   142 
       
   143 .. math::
       
   144 
       
   145   p_{X|Y}(x|y) = P(X=x | Y=y) = P(X=x \& Y=y) / P(Y=y)
       
   146 
       
   147 So:
       
   148 
       
   149 .. math::
       
   150 
       
   151   p_{X,Y}(x,y) = p_Y(y)·p_{X|Y}(x|y) = p_X(x)·p_{Y|X}(y|x)
       
   152 
       
   153   p_{X,Y,Z}(x,y,z) = p_Y(y)·p_{Z|Y}(z|y)·p_{X|Y,Z}(x|y,z)
       
   154 
       
   155   ∑_{x,y} p_{X,Y|Z}(x,y|z) = 1
       
   156 
       
   157 Conditional expectation of joint PMF
       
   158 ====================================
       
   159 
       
   160 :def:`Conditional expectation of joint PMF` is:
       
   161 
       
   162 .. math::
       
   163 
       
   164   E[X|Y=y] = ∑_x x·p_{X|Y}(x|y)
       
   165 
       
   166   E[g(X)|Y=y] = ∑_x g(x)·p_{X|Y}(x|y)
       
   167 
       
   168 Total probability theorem for joint PMF
       
   169 =======================================
       
   170 .. math::
       
   171 
       
   172   p_X(x) = ∑_y p_Y(y)·p_{X|Y}(x|y)
       
   173 
       
   174 Total expectation theorem for joint PMF
       
   175 =======================================
       
   176 .. math::
       
   177 
       
   178   E[X] = ∑_y p_Y(y)·E[X|Y=y]
       
   179 
       
   180 Independence of r.v.
       
   181 ====================
       
   182 
       
   183 r.v. :math:`X` and :math:`Y` is :def:`independent` if:
       
   184 
       
   185 .. math::
       
   186 
       
   187   ∀_{x,y}: p_{X,Y}(x,y) = p_X(x)·p_Y(y)
       
   188 
       
   189 So if two r.v. are independent:
       
   190 
       
   191 .. math::
       
   192 
       
   193   E[X·Y] = E[X]·E[Y]
       
   194 
       
   195   var(X+Y) = var(X) + var(Y)
       
   196 
       
   197 Well known discrete r.v.
       
   198 ========================
       
   199 
       
   200 Bernoulli random variable
       
   201 -------------------------
       
   202 
       
   203 :def:`Bernoulli random variable` with parameter :math:`p` is a random variable
       
   204 that have 2 outcomes denoted as :math:`0` and :math:`1` with probabilities:
       
   205 
       
   206 .. math::
       
   207 
       
   208   p_X(0) = 1 - p
       
   209 
       
   210   p_X(1) = p
       
   211 
       
   212 This random variable models a trial of experiment that result in success or
       
   213 failure.
       
   214 
       
   215 :def:`Indicator` of r.v. event :math:`A` is function::
       
   216 
       
   217    I_A = 1 iff A occurs, else 0
       
   218 
       
   219 .. math::
       
   220 
       
   221   P_{I_A} = p(I_A = 1) = p(A)
       
   222 
       
   223   I_A*I_B = I_{A∩B}
       
   224 
       
   225 .. math::
       
   226 
       
   227   E[bernoulli(p)] = 0*(1-p) + 1*p = p
       
   228 
       
   229   var[bernoulli(p)] = E[bernoulli(p) - E[bernoulli(p)]]
       
   230 
       
   231    = (0-p)²·(1-p) + (1-p)²·p = p²·(1-p) + (1 - 2p + p²)·p
       
   232 
       
   233    = p² - p³ + p - 2·p² + p³ = p·(1-p)
       
   234 
       
   235 Discret uniform random variable
       
   236 -------------------------------
       
   237 
       
   238 :def:`Discret uniform random variable` is a variable with parameters :math:`a`
       
   239 and :math:`b` in sample space :math:`{x: a ≤ x ≤ b & x ∈ ℕ}` with equal
       
   240 probability of each possible outcome:
       
   241 
       
   242 .. math::
       
   243 
       
   244   p_{unif(a,b)}(x) = 1 / (b-a+1)
       
   245 
       
   246 .. math::
       
   247 
       
   248   E[unif(a,b)] = Σ_{a ≤ x ≤ b} x * 1/(b-a+1)
       
   249   = 1/(b-a+1) * Σ_{a ≤ x ≤ b} x
       
   250 
       
   251   = 1/(b-a+1) * (Σ_{a ≤ x ≤ b} a + Σ_{0 ≤ x ≤ b-a} x)
       
   252 
       
   253   = 1/(b-a+1) * ((b-a+1)*a + (b-a)*(b-a+1)/2)
       
   254 
       
   255   = a + (b-a)/2
       
   256   = (b+a)/2
       
   257 
       
   258 
       
   259 .. math::
       
   260 
       
   261   var[unif(a,b)] = E[unif²(a,b)] - E²[unif(a,b)]
       
   262 
       
   263   = ∑_{a≤x≤b} x²/(b-a+1) - (b+a)²/4
       
   264 
       
   265   = 1/(b-a+1)·(∑_{0≤x≤b} x² - ∑_{0≤x≤a-1} x²) - (b+a)²/4
       
   266 
       
   267   = 1/(b-a+1)·(b+3·b²+2·b³ - (a-1)+3·(a-1)²+2·(a-1)³)/6 - (b+a)²/4
       
   268 
       
   269   = (2·b² + 2·a·b + b + 2·a² - a)/6 - (b+a)²/4
       
   270 
       
   271   = (b - a)·(b - a + 2) / 12
       
   272 
       
   273 .. NOTE::
       
   274 
       
   275    From Maxima::
       
   276 
       
   277      sum(i^2,i,0,n), simpsum=true;
       
   278 
       
   279               2      3
       
   280        n + 3 n  + 2 n
       
   281        ---------------
       
   282              6
       
   283 
       
   284      factor(b+3*b^2+2*b^3 - (a-1)-3*(a-1)^2-2*(a-1)^3);
       
   285 
       
   286                        2                  2
       
   287        (b - a + 1) (2 b  + 2 a b + b + 2 a  - a)
       
   288 
       
   289      factor((2*b^2 + 2*a*b + b + 2*a^2 - a)/6 - (b+a)^2/4), simp=true;
       
   290 
       
   291        (b - a) (2 - a + b)
       
   292        -------------------
       
   293                12
       
   294 
       
   295 Binomial random variable
       
   296 ------------------------
       
   297 
       
   298 :math:`Binomial random variable` is a r.v. with parameters :math:`n` (positive
       
   299 integer) and p from interval :math:`(0,1)` and sample space of positive integers
       
   300 from inclusive region :math:`[0, n]`:
       
   301 
       
   302 .. math::
       
   303 
       
   304   p_{binom(n,p)}(x) = n!/(x!*(n-x)!) p^x p^{n-x}
       
   305 
       
   306 Binomial random variable models a number of success of :math:`n` independent
       
   307 trails of Bernoulli experimants.
       
   308 
       
   309 .. math::
       
   310 
       
   311   E[binom(n,p)] = E[∑_{1≤x≤n} bernoulli(p)] = ∑_{1≤x≤n} E[bernoulli(p)] = n·p
       
   312 
       
   313   var[binom(n,p)] = var[∑_{1≤x≤n} bernoulli(p)] = ∑_{1≤x≤n} var[bernoulli(p)] = n·p·(1-p)
       
   314 
       
   315 Geometric random variable
       
   316 -------------------------
       
   317 
       
   318 :def:`Geometric random variable` is a r.v. with parameter :math:`p` from
       
   319 half open interval :math:`(0,1]`, sample space is all positive numbers:
       
   320 
       
   321 .. math::
       
   322 
       
   323   p_{geom(p)}(x) = p (1-p)^(x-1)
       
   324 
       
   325 This random variable models number of tosses of biased coin until first success.
       
   326 
       
   327 .. math::
       
   328 
       
   329   E[geom(p)] = ∑_{x=1..∞} x·p·(1-p)^(x-1)
       
   330 
       
   331   = p·∑_{x=1..∞} x·(1-p)^(x-1)
       
   332 
       
   333   = p/(1-p)·∑_{x=0..∞} x·(1-p)^x
       
   334 
       
   335   = p/(1-p)·(1-p)/(1-p - 1)² = p/p² = 1/p
       
   336 
       
   337 .. NOTE::
       
   338 
       
   339    Maxima calculation::
       
   340 
       
   341      load("simplify_sum");
       
   342      simplify_sum(sum(k * x^k, k, 0, inf));
       
   343        Is abs(x) - 1 positive, negative or zero?
       
   344        negative;
       
   345        Is x positive, negative or zero?
       
   346        positive;
       
   347        Is x - 1 positive, negative or zero?
       
   348        negative;
       
   349             x
       
   350        ------------
       
   351         2
       
   352        x  - 2 x + 1