# HG changeset patch # User Oleksandr Gavenko # Date 1458245091 -7200 # Node ID 9b4e31a031618031b469b8c9e323ddc57ae0b28e # Parent 60353d4d994d619514da29c17ef01b888fd8bca6 Normal random variables. diff -r 60353d4d994d -r 9b4e31a03161 probability-continuous.rst --- a/probability-continuous.rst Wed Mar 16 16:18:11 2016 +0200 +++ b/probability-continuous.rst Thu Mar 17 22:04:51 2016 +0200 @@ -16,11 +16,11 @@ .. math:: - PDF(a ≤ X ≤ b) = P(a ≤ X ≤ b) = ∫_{a, b} f_X(x) dx + PDF(a ≤ X ≤ b) = P(a ≤ X ≤ b) = ∫_{a, b}\ f_X(x) \ dx f_X(x) ≥ 0 - ∫_{-∞, +∞} f_X(x) dx = 1 + ∫_{-∞, +∞}\ f_X(x) \ dx = 1 :math:`f_X(x)` funtion maps values :math:`x` from sample space to real numbers. @@ -33,7 +33,7 @@ :def:`Expectation` of continuous random variable is: -.. math:: μ = E[X] = ∫_{-∞, +∞} x·f_X(x)·dx +.. math:: μ = E[X] = ∫_{-∞, +∞}\ x·f_X(x) \ dx Properties: @@ -50,7 +50,7 @@ :def:`Variance` of continuous random variable is: -.. math:: var[X] = ∫_{-∞, +∞} (x-μ)²·f_X(x)·dx +.. math:: var[X] = ∫_{-∞, +∞}\ (x-μ)²·f_X(x) \ dx Properties: @@ -67,6 +67,52 @@ .. math:: σ_Χ = sqrt(var[X]) +Cumulative distribution functions +================================= + +:def:`Cumulative distribution functions` (CDF) of random variable :math:`X` is: + +.. math:: F_X(x) = P(X ≤ x) = ∫_{-∞, x}\ f_X(t) \ dt + +So: + +.. math:: + + P(a ≤ X ≤ b) = F_X(b) - F_X(a) + f_X(a) = ∫_{a,b}\ f_X(x) \ dx + + F_X(-∞) = 0 + + F_X(+∞) = 1 + +and :math:`F_X(a) ≤ F_X(b)` for :math:`a ≤ b`. + +Relation between CDF and PDF: + +.. math:: (d(CDF(t))/dt)(x) = PDF(x) + +Conditional probability +======================= + +:def:`Conditional probability` of continuous random variable is: + +.. math:: P(X ⊆ B | A) = ∫_{B}\ f_{X|A}(x) \ dx = ∫_{A∩B}\ f_X(x) \ dx / P(A) + +:def:`Conditional expectation` of continuous random variable is: + +.. math:: E[X|A] = ∫_\ x·f_{X|A}(x) \ dx + +Properties: + +.. math:: + + E[g(X)|A] = ∫_\ g(x)·f_{X|A}(x) \ dx + +Independence +============ + +Random variable :math:`X`, :math:`Y` are :def:`independent` if: + +.. math:: f_{X,Y}(x, y) = f_X(x)·f_Y(y) Continuous uniform random variable ================================== @@ -86,7 +132,7 @@ .. math:: - E[unif(a, b)] = ∫_{a, b} x·1/(b-a)·dx = x²/2/(b-a) |_{a, b} = (b²-a²)/(b-a)/2 = (b+a)/2 + E[unif(a, b)] = ∫_{a, b}\ x·1/(b-a)·dx = x²/2/(b-a) |_{a, b} = (b²-a²)/(b-a)/2 = (b+a)/2 E[unif²(a, b)] = ∫_{a, b} x²·1/(b-a)·dx = x³/3/(b-a) |_{a, b} = (b³-a³)/(b-a)/3 = (b²+b·a+a²)/3 @@ -123,11 +169,11 @@ .. math:: - ∫_{-∞, +∞} f_X(x)·dx = ∫_{0, +∞} λ·exp(-λ·x)·dx = -exp(-λ·x) |_{0, +∞} = 1 + ∫_{-∞, +∞}\ f_X(x) \ dx = ∫_{0, +∞}\ λ·exp(-λ·x) \ dx = -exp(-λ·x) |_{0, +∞} = 1 - E[exp(λ)] = ∫_{0, +∞} x·λ·exp(-λ·x)·dx = 1/λ + E[exp(λ)] = ∫_{0, +∞}\ x·λ·exp(-λ·x) \ dx = 1/λ - E[exp²(λ)] = ∫_{0, +∞} x²·λ·exp(-λ·x)·dx = 1/λ² + E[exp²(λ)] = ∫_{0, +∞}\ x²·λ·exp(-λ·x) \ dx = 1/λ² .. note:: @@ -150,9 +196,28 @@ 2 lambda -Cumulative distribution functions -================================= +Normal random variables +======================= + +:def:`Normal random variables` with parameters :math:`μ, σ` and :math:`σ > 0` +defined by PDF: + +.. math:: norm(μ, σ) = 1/σ/sqrt(2·π)·exp(-(x-μ)²/σ²/2) + +Properties: + +.. math:: -:def:`Cumulative distribution functions` of random variable :math:`X` is: + E[norm(μ, σ)] = μ + + var[norm(μ, σ)] = σ² + +Disjoint distribution of two normal r.v. +======================================== -.. math:: F_X(x) = P(X ≤ x) = ∫_{-∞, x} f_X(t)·dt +.. math:: + + norm2(μ₁, μ₂, σ₁, σ₂) = norm(μ₁, σ₁)·norm(μ₂, σ₂) + + = 1/(2·π·σ₁·σ₂)·exp(-(x-μ₁)²/σ₁²/2 - (x-μ₂)²/σ₂²/2) +